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Abstract—This paper demonstrates a low loss fully embedded
multilayer bandpass filter (BPF) using low-temperature cofired ce-
ramic (LTCC) technology for 3-D integration of 40-GHz multi-
media wireless system (MWS) radio. The LTCC filter implemented
in a stripline configuration occupies an area of only 5.5 X 2.3
X 0.6 mm including shielding structure and coplanar waveguide
(CPW) transitions. The measured insertion loss was as small as
1.9 dB at a center frequency of 41.8 GHz, and the return loss was
12.2 dB including the loss associated with two CPW-to-stripline
transitions. This six-layer BPF showed 3-dB bandwidth of 10.5%
from 39.6 to 44.0 GHz at a center frequency of 41.8 GHz and sup-
pressed the local oscillator (LO) signal to 20.2 dB at a local oscil-
lator frequency of 38.8 GHz, making it suitable for the 40 GHz
MWS applications.

Index Terms—Bandpass filter (BPF), embedded, low-tempera-
ture cofired ceramics (LTCC), multilayer, multimedia wireless sys-
tems (MWS).

I. INTRODUCTION

HE INCREASING demands for real time and high-speed
T wireless data transmissions have accelerated realization of
broadband wireless systems like wireless local area networks
(WLANS5) [1], wireless IEEE1394 [2], and multimedia wireless
systems (MWS) [3], [4] using millimeter-wave frequency.
One of the most important issues for implementation of the
millimeter-wave wireless terminals is the system integration of
the radio in a small size as well as an even greater functionality
and lower manufacturing cost. The component, which covers
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Fig. 1. (a) Proposed silicon on plastic structure with the fully embedded BPF
and (b) traditional structure with an off-chip bonded BPF.

significant space and is required to be integrated 3-D with
active circuitry, is the filter, especially, the bandpass filter
(BPF), which cannot be integrated within the active circuit.
Recently, there have been several reports on millimeter-wave
filters [5]-[10]. However, they are developed as off-chip dis-
crete components which need to be packaged on a separate
printed circuit board [5], or be placed on top of the substrate
[6]-[8], and so consume a large footprint in the radio. One of
the most promising candidates offering low loss substrate for
millimeter-wave multilayer circuits [9] as well as a high-Q
dielectric for filter is the low-temperature cofired ceramics
(LTCC) technology [10]. With LTCC, the 3-D integration
technology, filters can be fully embedded within the multilayer
circuit, and then above them, other circuits such as amplifiers
and mixers can be mounted space-efficiently. It has been re-
ported recently that the embedded BPFs have been built just for
Ku-Band transmitter module [11], for C-band radio-frequency
(RF) front-end module [12], for Bluetooth RF transceiver
module [13] and for millimeter-wave applications [14].

In this letter, we propose and implement a fully embedded
LTCC multilayer BPF for 40-GHz MWS radio. The dielectric
constant and loss tangent of the LTCC are 7.2 and 0.003 at 40
GHz and silver is used as conductor. This is the report on the
fully embedded multilayer millimeter-wave BPF suitable for
system-on-package applications.
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Fig. 2. Schematic description of the CPW-to-SL-to-CPW transition: (a) top
view; (b) cross-sectional view across AA’; (c) cross-sectional view across BB’.

II. EMBEDDED BPF

Fig. 1 shows the schematic description of the radio around
BPF, where (a) describes the embedded BPF connected with next
active monolithic microwave integrated circuits (MMICs) while
(b) describes the traditional off-chip BPF requiring additional as-
semblies such as flip-chip or wire bonding. The stripline struc-
ture is selected to implement the millimeter-wave BPF because
upper and lower ground planes make the even-mode and odd-
mode phase velocities equal and also it has less radiation loss
and dispersion compared to other transmission line structures
[15]. The coplanar waveguide-to-stripline (CPW-to-SL) transi-
tions allow the interconnection between the embedded SL BPF
and active components such as a power amplifier and a mixer on
top of the LTCC circuit. Also, the SL LTCC filter can be mea-
sured using microwave ground-signal-ground (GSG) probes.

III. CPW-TO-STRIPLINE TRANSITIONS

Fig. 2 describes the test structure to evaluate the CPW-to-SL
transitions. Both CPW and SL have been designed to have 50-2
characteristic impedance. The CPW-to-SL transition structure
has been optimized for minimum transition loss by controlling
the space (S) between CPW signal line and upper ground of
the SL. The upper ground plane for both the CPW and SL has
been connected to the bottom ground plane of the SL through
multiple vias along the transmission lines to ensure same poten-
tial between the ground planes. Fig. 3 shows the simulated and
measured S-parameter results for the CPW-to-SL transition of
Fig. 2, which is composed of each two vias (input and output
ports) in two layers (L5, L6), 4.6-mm-long SL and two 0.6-mm-
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Fig. 4. (a) Schematic diagram and (b) top view of a fully embedded multilayer
BPF.

long CPWs. The simulation and measurement were performed
CST microwave studio and probe station, respectively. Even
though there is a little ripple due to long cable length and a few
calibration errors, the trend of the simulation and measurement
results is generally similar. The total insertion loss including
two transitions for measurement at the input/output (I/O) ports
is measured as small as 1.9 dB at 40 GHz.

IV. BPF DESIGN

The fully embedded multilayer BPF was designed to realize
fourth-order Tchebyscheff prototype response having a 3-dB
bandwidth of 10.5% from 39.6 to 44.0 GHz at a center frequency
of 41.8 GHz with a 0.05 dB ripple. Fig. 4 shows a schematic dia-
gram and a top view of the embedded multilayer BPF. This BPF
is made up of four coupled line sections located on the second
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TABLE 1
PHYSICAL DIMENSIONS OF THE MULTILAYER BPF

W1 w2 w3 S1 S2

120 um 121 um 100 um 233 um 35um
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Fig. 5. (a) 3-D schematic view and (b) insertion loss and return loss of the
designed multilayer BPF.

and third layers (L2, L3) and they have a length of A/4 each at
the center frequency. In order to reduce the size of the filter, the
two hairpin resonators are used in the filter [16]. The number of
used layers is 6, and thus the total thickness is 0.6 mm. The 50-2
input and output CPWs are connected with SLs located on the
fourth layer (L4) through the signal vias. The straight resonators
located on the third layer (L.3) couple to a set of bent U-shaped
resonators located on the second layer (L.2), which are magnet-
ically coupled.

The BPF was designed using the formulas of the gen-
eral single-layer parallel coupled BPF. The even-mode and
odd-mode impedance values for each segment were obtained
by using the admittance inverter corresponding to a single
section, and the physical dimensions of the coupled stripline
by using the nomodiagrams [17]. The physical dimensions
are obtained through being adjusted to the desired response.
The resonator length was corrected to consider the fringing
capacitance from the end of each SL. Each physical dimension
of the multilayer BPF shown in Fig. 4(b) is summarized in
Table 1. Fig. 5(a) shows a 3-D schematic view of the designed
multilayer BPF. In a designed BPF, there are discontinuities at
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Fig. 6. X-ray photograph of the fabricated BFP.
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Fig.7. Simulated and measured insertion and return loss of the embedded mul-
tilayer BPF.

the angled bends of the hairpin resonators. In order to reduce
the effects of discontinuity due to angled bends of the hairpin
resonators, the hairpin resonator bends must be chamfered
[16]. The discontinuity reactance causes a reduction in length
compared to that measured along the centerlines of the stripline
[18]. The simulated optimum length of the bend is 70 yum. And
in order to equalize the electric potential between the upper and
lower ground planes of the SL structure, ground vias are placed
around the filter.

Fig. 5(b) shows the results designed by an electromagnetic
(EM) simulator, CST microwave studio. The insertion loss and
return loss of the filter are 1.2 and 13.2 dB, respectively. The
3-dB bandwidth ratio is controlled to 10.5% from 39.6 to 44.0
GHz, and the local oscillator (LO) rejection at a local oscillator
frequency of 38.8 GHz is as much as 21 dB. We understand the
variation of the return loss as a parasitic resonance according to
the space made by the ground vias surrounding the U-shaped
resonators.

V. MEASUREMENT RESULTS

Fig. 6 shows an X-ray photograph of the fabricated BPF, and
Fig. 7 reveals the measured insertion loss and return loss of the
filter for a frequency range from 0 to 50 GHz and for a magnified
window from 36 to 46 GHz. The measured values include the
loss associated with two SL-to-CPW transitions, each of which
is composed of a two-layer via. The total insertion loss of the
filter including transition losses is as small as 1.9 dB at a center
frequency of 41.8 GHz. The 3-dB bandwidth ratio is controlled

Authorized licensed use limited to: Korea Aerospace University. Downloaded on April 14, 2009 at 00:49 from IEEE Xplore. Restrictions apply.



524

TABLE II
SUMMARY OF THE MEASURED RESULT COMPARED TO THE SIMULATED
Parameters Simulated Data Measured Data
Center Frequency(GHz) 41.8 41.8
3 dB bandwidth (%) 10.5 10.5
Insertion Loss (dB) 1.1 1.9
Return Loss (dB) 13.2 12.2
LO rejection (dB) at 38.8 GHz 21 20.2
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Fig. 8. Simulation results of the proposed BPF according to the variation of
LTCC process.

to 10.5% from 39.6 to 44.0 GHz, and the LO rejection at a local
oscillator frequency of 38.8 GHz is as much as 20.2 dB. The
measurement equipment consists of 2 GSG probes with 500 ;m
pitch, probe station and network analyzer (8510C), which can
be measured from direct current (dc) to 50 GHz.

Table II outlines the measured performance compared to
the simulated performance. The measured insertion loss at the
center frequency is 0.8 dB larger than that of the simulated
result, and the difference might include the cable and probe
losses for measurement and lossy metal effect. However, a good
agreement was observed for the frequency behavior between
simulated and measured values.

The most important parameter in the LTCC fabrication
process is the variation of the shrinkage rate. In the worst case of
our LTCC process, the variation of the shrinkage rate is +0.3%.
As shown in Fig. 8, when the variation of the shrinkage rate
has the value of +0.3%, it means that the length of the line
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shrinks more than expected. Even though the center frequency
shifts to upward, the bandwidth of the BPF can be maintained to
40.5-43.5 GHz and the LO signal can be suppressed under 20 dB.
However, when the variation of the shrinkage rate has the value
of —0.3%, it means that the length of the line shrinks less than
expected. So, the center frequency shifts to downward and then
the variation of the center frequency is as small as around 0.4%.

VI. CONCLUSION

We have presented a fully embedded multilayer LTCC BPF
for 40 GHz MWS applications with optimized coplanar wave-
guide-to-stripline (CPW-to-SL) transitions and fourth-order
Tchebyscheff structure of SL resonators. This proposed filter
allows 3-D integration of millimeter-wave radio that can result
in significant size reduction and low-loss connection to the next
circuits. The measured insertion loss is as small as 1.9 dB, and
the return loss is 12.2 dB including the loss associated with
two CPW-to-SL transitions. The 3-dB bandwidth is 10.5% at a
center frequency of 41.8 GHz. The overall size is 5.5 x 2.3 x
0.6 mm including the ground vias and CPW pads.
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